Science for our
Nation's
Energy Future

Energy Frontier Research Center

Community Website
Frontiers in
Energy Research
Newsletter
November 2014

On Your Left! How to Provide Electric Cars the Zip Needed to Pass the Competition

Robert L. Sacci

Illustration of the atomic force microscope tip interacting with the electrical double layer responsible for energy storage in supercapacitors.

From waterproofing a patio to impeding corrosion of a battleship, from depositing gold on jewelry to building energy-dense devices for fast-starting electric cars, interfaces are ever present. Supercapacitors are devices that store charge within the electrical double layer that is formed at the electrode-electrolyte interface. The energy is readily accessible for short high-powered tasks such as accelerating an electric vehicle. Jennifer Black and co-workers in the Fluid Interface Reactions, Structures and Transport Center (FIRST) studied how molecules and ions interact with the electrode surfaces in supercapacitors. Marrying molecular dynamics simulations with atomic force microscopy (AFM) force spectroscopy, the team chemically and structurally characterized the electrical double layer to improve the understanding of the charge storage mechanism. Their findings can lead to tuning surface interactions to improve the energy density of supercapacitors and their performance in electric vehicles.

During the charging and discharging of a supercapacitor, positively and negatively charged ions separate. They then condense at the surface of the oppositely charged electrodes to form a structure that stores electric charge. Because capacity is restricted to the surface interface (less than 5 nanometers thick), electrochemical capacitors have significantly less energy density than batteries. That is, supercapacitors may allow you to accelerate on a highway, but it is the lithium ion within the electric vehicle's battery that allows you to drive to and from the grocery store. One way to increase the energy density of supercapacitors is to increase the operational voltage, as doubling the voltage quadruples the energy density. Previous generations of supercapacitors used water, but at high voltages, water splits into oxygen and hydrogen gas. Room temperature ionic liquid electrolytes are prime candidates to increase voltage because they are far more stable than water. However, the liquids must support a stable electrical double layer structure for them to be useful in supercapacitors.

The electrical double layer is typically only 5 nanometers thick, so obtaining a detailed structure was difficult. With this in mind, Black and her co-workers turned to AFM to map out the ionic layering at the carbon electrode surface.

"The sensitivity of the AFM probe to incredibly weak forces allows us to determine the structure of the ionic liquid within the electrical double layer with molecular-level resolution," explained Black. "We directly observed restructuring of ions in response to an applied potential, and it was revealed that ions within 1 nanometer of the electrode surface are responsible for charge storage, providing insight into the mechanism of charge storage for this relatively new class of electrolytes."

Computer modeling of the electrical double layer predicted that when the carbon electrode is charged or discharged, the ionic liquid forms a layered structure about 3 nanometers thick at the carbon surface. The layers alternate between anion-rich and cation-rich. Using AFM force spectroscopy, the team detected these layers with great accuracy. They measured the ion density of the layers as a function of distance from the electrode. They found that the AFM measurement is particularly sensitive to the negative ion layer structure, providing a near-perfect match between peaks in the AFM force-distance data and the heights of the computer-simulated ion layers above the graphite surface. Also, they found that the inner ionic layer compresses against the surface, potentially allowing for more ions to approach the surface, thereby adding additional charge storage capacity.

The next step in her research? Black responded, "the unmatched lateral resolution of scanning probe techniques also opens the pathway to mapping the structure of the electrical double layer in a 3D manner." This, she went on to say, would allow them to probe how defects found in the structure of the electrical double layer on the electrode surface can be used to further increase the energy density of supercapacitors and determine its rate performance.

The FIRST team combined expertise in computational modeling and AFM to improve understanding of the charge storage mechanism. They also presented clues as to how ionic liquids can be used to increase the energy density of electrochemical capacitors. Improvements would allow for increased energy storage for supercapacitors in applications requiring high power for short time intervals, such as merging safely onto I-75 toward Oak Ridge, Tennessee.

More Information

Black JM, D Walters, A Labuda, G Feng, PC Hillesheim, S Dai, PT Cummings, SV Kalinin, R Proksch, and N Balke. 2013. "Bias-Dependent Molecular-Level Structure of Electrical Double Layer in Ionic Liquid on Graphite." Nano Letters 13:5954-5960. DOI: 10.1021/nl4031083

Acknowledgments

The experimental AFM work, MD simulations, and sample preparation by JB, GF, PTC, and SD were supported by the Fluid Interface Reactions, Structures and Transport (FIRST), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. The experiments were performed at Asylum Research in Santa Barbara. Additional support for the experimental AFM work by NB were provided by the DOE Basic Energy Sciences, Materials Sciences and Engineering Division through the Office of Science Early Career Research Program, and the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE.

About the author(s):

What the Surface Says

Knowing how ions behave on an electrode's surface could lead to faster electric cars

Researchers are studying the interface between a supercapacitor's electrode and ions to create the materials necessary for fast-starting electric cars.

Zipping onto the Beltway can be difficult in electric cars. Adding a supercapacitor that releases its energy very quickly could help. Unfortunately, supercapacitors don't hold enough energy. To increase the capacity, scientists need to understand how charged particles or ions react with the electrode surfaces. At the Fluid Interface Reactions, Structures and Transport Center (FIRST), led by Oak Ridge National Laboratory, researchers focused on the 5-nanometer-thick layer of ions that forms around the electrodes. This layer is where supercapacitors store their charge. The team used simulations and atomic force microscopy experiments to characterize the layers. They found that the innermost layer compresses, possibly allowing more ions to approach the electrode. This study and follow-on work could lead to higher capacity supercapacitors.

More Information

Black JM, D Walters, A Labuda, G Feng, PC Hillesheim, S Dai, PT Cummings, SV Kalinin, R Proksch, and N Balke. 2013. "Bias-Dependent Molecular-Level Structure of Electrical Double Layer in Ionic Liquid on Graphite." Nano Letters 13:5954-5960. DOI: 10.1021/nl4031083

Disclaimer: The opinions in this newsletter are those of the individual authors and do not represent the views or position of the Department of Energy.